"O-RING SEAL"

TAPERED P I P E THR

940 • Bulkhead 45° Union Elbow

Part No.	Tube O.D.	Blkhed. Hole Dia.	$\begin{gathered} \text { "A" } \\ \text { (B/khd. } \\ \text { Leg) } \end{gathered}$	"Tube Leg
940-4	1/4	17/32"	21/8"	29/32"
940-5	5/16"	19/32"	25/32"	7/8"
940-6	3/8"	21/32"	29/32"	1"
940-8	$1 / 2^{\prime \prime}$	29/32"	219/32"	17/32"
940-10	5/8"	11/32"	$2^{27 / 32 "}$	17/16"
940-12	3/4"	15/32"	33/32"	119/32"
940-16	$1^{\prime \prime}$	17/32"	39/32"	113/16"
940-20	11/4"	125/32"	323/32"	27/32"

Max. Bulkhead Thickness 1/2"

960
 BULKHEAD TEE TUBE END ALL OPENINGS

980

Part Numbers Include Body Nuts, Sleeves, " O-Rings" and Back-Up Washers

Maximum Bulkhead Thickness $1 / 2^{\prime \prime}$

Note: When Ordering Lenz Fittings In Stainless Steel Add -SS To The Part Number. Example: 100-12SS

ISPEGIFICATIONS \& IDENTIFIGATION

 on special order.
LENZ HYDRAULIC STEEL TUBING Dead Soft • Fully Annealed • Bright Finish

Superior grade tubing selected for excellence of bending and flaring. The formula given below is determined with the flow calculated to give nominal pressure drop through tubing having the diameter and wall thickness as indicated in the table to left. This flow is based on a velocity of 15 feet per second and fluids having a maximum viscosity of 315 S.S.U.

Formula

$$
\begin{aligned}
& \mathrm{GPM}=\frac{\pi \stackrel{\star}{\mathrm{D}}^{2} \times 15}{1.283}=36.69 \times \stackrel{\star}{\mathrm{D}}^{2} \\
& * \mathrm{D}=\text { Inside Diameter of Tubing }
\end{aligned}
$$

Furnished in 12 Ft . Lengths-Longer Lengths On Request.
**Safety Factor of 5 means that the tubing will burst at 5 times the working pressure indicated.

Size No.	O.D.	I.D.	Wall Thickness	G.P.M. Flow	Working Pressure
$\mathbf{4 . 0 3 5}$	$1 / 4^{\prime \prime}$.180	.035	1.2	2800
$\mathbf{4 . 0 4 9}$	$1 / 4^{\prime \prime}$.152	.049	.85	3920
$\mathbf{5 . 0 3 5}$	$5 / 16^{\prime \prime}$.242	.035	2.15	2240
$\mathbf{5 . 0 4 9}$	$5 / 16^{\prime \prime}$.214	.049	1.68	3136
$\mathbf{6 . 0 3 5}$	$3 / 8^{\prime \prime}$.305	.035	3.45	1867
$\mathbf{6 . 0 4 9}$	$3 / 8^{\prime \prime}$.277	.049	2.82	2613
$\mathbf{6 . 0 6 5}$	$3 / 8^{\prime \prime}$.245	.065	2.2	3467
$\mathbf{8 . 0 3 5}$	$1 / 2^{\prime \prime}$.430	.035	6.79	1400
$\mathbf{8 . 0 4 9}$	$1 / 2^{\prime \prime}$.402	.049	5.92	1960
$\mathbf{8 . 0 6 5}$	$1 / 2^{\prime \prime}$.370	.065	5.03	2600
$\mathbf{1 0 . 0 4 9}$	$5 / 8^{\prime \prime}$.527	.049	10.2	1568
$\mathbf{1 0 . 0 6 5}$	$5 / 8^{\prime \prime}$.495	.065	9.0	2080
$\mathbf{1 0 . 0 9 5}$	$5 / 8^{\prime \prime}$.435	.095	6.94	3040
$\mathbf{1 2 . 0 4 9}$	$3 / 4^{\prime \prime}$.652	.049	15.6	1307
$\mathbf{1 2 . 0 6 5}$	$3 / 4^{\prime \prime}$.620	.065	14.1	1733
$\mathbf{1 2 . 0 9 5}$	$3 / 4^{\prime \prime}$.560	.095	11.5	2533
$\mathbf{1 2 . 1 0 9}$	$3 / 4^{\prime \prime}$.532	.109	10.4	2907
$\mathbf{1 4 . 0 4 9}$	$7 / 8^{\prime \prime}$.777	.049	22.1	1120
$\mathbf{1 4 . 0 6 5}$	$7 / 8^{\prime \prime}$.745	.065	20.4	1486
$\mathbf{1 4 . 0 9 5}$	$7 / 8^{\prime \prime}$.685	.095	17.2	2171
$\mathbf{1 6 . 0 6 5}$	$1^{\prime \prime}$.870	.065	27.8	1300
$\mathbf{1 6 . 0 9 5}$	$1^{\prime \prime}$.810	.095	24.1	1900
$\mathbf{1 6 . 1 2 0}$	$1^{\prime \prime}$.760	.120	21.2	2400
$\mathbf{2 0 . 0 6 5}$	$1^{1 / 4^{\prime \prime}}$	1.120	.065	46.0	1040
$\mathbf{2 0 . 0 9 5}$	$1^{1 / 4^{\prime \prime}}$	1.060	.095	41.2	1520
$\mathbf{2 0 . 1 2 0}$	$1^{1 / 4^{\prime \prime}}$	1.010	.120	37.4	1920
$\mathbf{2 4 . 0 9 5}$	$1^{1 / 2^{\prime \prime}}$	1.310	.095	63.0	1267
$\mathbf{2 4 . 1 2 0}$	$1^{1 / 2^{\prime \prime}}$	1.260	.120	58.1	1600

PCC-LENZ S.A.E. Port Contour Cutter

Part No.	Tube 0.D.	Thread Size			
PCC-2	1/8"	5/16"-24	323/32"	$2^{11 / 64 "}$. 500
PCC-4	1/4"	7/16"-20	325/32"	25/32"	. 500
PCC-5	5/16"	1/2"-20	327/32"	27/32"	. 500
PCC-6	3/8"	9/16"-18	329/32"	25/64"	. 500
PCC-8	1/2"	3/4"-16	331/32"	21/16"	. 500
PCC-10	5/8"	7/8"-14	331/32"	153/64"	. 750
PCC-12	3/4"	11/16"-12	41/8"	155/64"	. 750
PCC-14	7/8"	13/16"-12	41/8"	127/32"	. 750
PCC-16	1 "	15/16"-12	41/8"	127/32"	. 750
PCC-20	11/4"	15/8"-12	41/8"	153/64"	1.000
PCC-24	11/2"	17/8"-12	41/8"	113/16"	1.000
PCC-32	2"	21/2"-12	41/4"	129/32"	1.000

PCT • LENZ Precision S.A.E. Port Thread Taps

Part Number	Tube O.D.	Thread Size
PCT-2	1/8"	5/16"-24
PCT-4	1/4"	7/16"-20
PCT-5	5/16"	1/2"-20
PCT-6	3/8"	9/16"-18
PCT-8	1/2"	3/4"-16
PCT-10	5/8"	7/8"-14
PCT-12	3/4"	11/16"-12
PCT-14	7/8"	13/16"-12
PCT-16	$1{ }^{1 \prime}$	15/16"-12
PCT-20	11/4"	15/8"-12
PCT-24	11/2"	17/8"-12
PCT-32	2"	21/2"-12

These tools have three flutes which form the standard internal O-Ring Boss for straight thread tube fittings. Standard in high-speed steel Carbide tipped available on special order. Four flute cutters available

Lenz Hydraulic Steel Tubing

